Pręt miedziany – zadanie na pozór z elektrochemii Wtorek, Lu 19 2013 

Nauczyciel włożył pręcik z metalicznej miedzi do zlewki z roztworem azotanu(V) srebra. Po pewnym czasie na zanurzonej części pręta pojawiły się szare kryształki, natomiast sam roztwór zabarwił się na niebiesko. Temperatura zlewki i wskazanie wagi nie uległy zmianie.

Które z poniższych stwierdzeń wynikają z tego doświadczenia?

Lp. Stwierdzenie Czy można to wywnioskować na podstawie opisanego doświadczenia?
 1. Wszystkie związki zawierające jony miedzi posiadają barwę niebieską.   Tak /  Nie
 2. W tej reakcji nie powstają produkty gazowe.   Tak /  Nie
 3. Reakcja pręta miedzianego z roztworem azotanu(V) srebra jest reakcją egzotermiczną.   Tak /  Nie

 

Syrop na kaszel – zadanie z Bazy Narzędzi Dydaktycznych Niedziela, Sty 6 2013 

Lekarz polecił pani Hani przyjmować syrop sosnowy na kaszel. Pani Hania przeczytała na opakowaniu, że 100 g syropu zawiera:

  • wyciąg sosnowy płynny – 6,6 g,
  • wyciąg z kopru włoskiego – 1,0 g,
  • substancję przeciwkaszlową – 0,05 g,
  • substancje pomocnicze: wodę, etanol (5%) i sacharozę.

W butelce jest 125 g syropu, a pojedyncza dawka wynosi 20 g.

Stężenie alkoholu w promilach (P) we krwi kobiety można oszacować stosując zamieszczony poniżej wzór, w którym A oznacza masę wypitego czystego alkoholu w gramach, a W to masa ciała w kilogramach.

Osoba, która ma we krwi więcej niż 0,2 promila alkoholu, nie może prowadzić pojazdów mechanicznych.

Zadanie 1

Ile gramów czystego etanolu znajduje się w butelce syropu?   

 A. 0,75
 B. 5,0
 C. 15,0
 D. 6,25

Odpowiedź, podstawa programowa i omówienie zadania

Zadanie 2

Czy pani Hania, która waży 50 kg, może prowadzić samochód po przyjęciu jednorazowej dawki leku?

 I.  Może, ponieważ stężenie alkoholu w jej krwi wynosi mniej niż 0,05 promila.
 II.  Może, ponieważ stężenie alkoholu w jej krwi wynosi poniżej 0,2 promila, chociaż przekroczyło 0,05 promila.
 III.  Nie może, ponieważ stężenie alkoholu w jej krwi wynosi więcej niż 0,2 promila, chociaż nie przekroczyło 0,5 promila.
 IV.  Nie może, ponieważ stężenie alkoholu w jej krwi wynosi więcej niż 0,5 promila.

Szczegółowy opis wiązki zadań oraz przypisanie wymagań z podstawy programowej i opis umiejętności mierzonych w zadaniu można znaleźć na stronie Bazy Narzędzi Dydaktycznych.

Piktogramy – narzędzie dydaktyczne z BND IBE Wtorek, List 27 2012 

Poniżej przedstawiono trzy ostrzegawcze znaki graficzne – tak zwane piktogramy, wraz z ich skróconym opisem. Znaki te są obowiązkowo umieszczane przez producentów na opakowaniach wszelkich substancji chemicznych mogących stanowić zagrożenie dla człowieka lub środowiska.

Piktogram 1    –  substancje bardzo łatwopalne
Piktogram 2    –  substancje żrące
Piktogram3    –  substancje toksyczne

Który lub które spośród wyżej opisanych znaków należałoby nakleić na pojemniki  z substancjami wymienionymi w tabeli?

Substancja

Piktogram:

Piktogram 1

Piktogram:

Piktogram 2

 Piktogram:

Piktogram3

1. gaz propan-butan  Tak  /   Nie  Tak  /   Nie  Tak  /   Nie
2. wodorotlenek sodu  Tak  /   Nie  Tak  /   Nie  Tak  /   Nie
3. alkohol metylowy  Tak  /   Nie  Tak  /   Nie  Tak  /   Nie

Pochodzenie oraz dodatkowy, szczegółowy opis zadania: Narzędzie dydaktyczne.

Wapno budowlane – zadanie z opisem Środa, List 7 2012 

Na schemacie przedstawiono w uproszczony sposób przemiany związków wapnia mających zastosowanie w budownictwie. Strzałka skierowana w górę oznacza, że energia musi być dostarczona, aby zaszła reakcja, natomiast strzałka skierowana w dół oznacza, że energia wydziela się w trakcie reakcji.

 

 

Reakcja

 

Przeanalizuj schemat, a następnie zaznacz w tabeli poniżej, której (lub których) reakcji ze schematu dotyczy opis.

 

Opis reakcji ze schematu Numer reakcji ze schematu
I. Reakcja zachodzi pod wpływem ogrzewania.  1  /   2  /   3
II. Jest to reakcja egzoenergetyczna.  1  /   2  /   3

 

Po pełen opis zadania, oraz odpowiedź, takie szczegóły jak: podstawa programowa i omówienie zadania zapraszam do Bazy Narzędzi Dydaktycznych IBE, skąd z resztą pochodzi przedstawiane zadanie.

 

Jad pszczół – zadanie z Bazy Narzędzi Dydaktycznych Środa, Paźdź 31 2012 

Pszczoły wraz z jadem wydzielają śladowe ilości substancji chemicznej, której strukturę pokazano na rysunku. Substancja ta wskazuje innym pszczołom miejsce do żądlenia.

Obrazek

Do której z grup zalicza się substancja wydzielana przez pszczoły wraz z jadem?

 A. alkoholi,

 B. estrów,

 C. kwasów karboksylowych,

 D. tłuszczów.

Pochodzenie oraz dodatkowy, szczegółowy opis zadania: Narzędzie dydaktyczne: Jad pszczół.

Taką dostaniesz odpowiedź jakie zadasz pytanie, Thinking outside the box Sobota, Paźdź 13 2012 

Kolega z pracy wysłał mi maila z historią dotyczącą roli precyzji w układaniu poleceń do zadań.

Zachęcam do lektury.

The Barometer Story

by Alexander Calandra – an article from Current Science, Teacher’s Edition, 1964.

Some time ago, I received a call from a colleague who asked if I would be the referee on the grading of an examination question. It seemed that he was about to give a student a zero for his answer to a physics question, while the student claimed he should receive a perfect score and would do so if the system were not set up against the student. The instructor and the student agreed to submit this to an impartial arbiter, and I was selected.

The Barometer Problem

I went to my colleague’s office and read the examination question, which was, „Show how it is possible to determine the height of a tall building with the aid of a barometer.”

The student’s answer was, „Take the barometer to the top of the building, attach a long rope to it, lower the barometer to the street, and then bring it up, measuring the length of the rope. The length of the rope is the height of the building.”

Now, this is a very interesting answer, but should the student get credit for it? I pointed out that the student really had a strong case for full credit, since he had answered the question completely and correctly. On the other hand, if full credit were given, it could well contribute to a high grade for the student in his physics course. A high grade is supposed to certify that the student knows some physics, but the answer to the question did not confirm this. With this in mind, I suggested that the student have another try at answering the question. I was not surprised that my colleague agreed to this, but I was surprised that the student did.

Acting in terms of the agreement, I gave the student six minutes to answer the question, with the warning that the answer should show some knowledge of physics. At the end of five minutes, he had not written anything. I asked if he wished to give up, since I had another class to take care of, but he said no, he was not giving up. He had many answers to this problem; he was just thinking of the best one. I excused myself for interrupting him, and asked him to please go on. In the next minute, he dashed off his answer, which was:

„Take the barometer to the top of the building and lean over the edge of the roof. Drop the barometer, timing its fall with a stopwatch. Then, using the formula S= 1/2 at^2, calculate the height of the building.”

At this point, I asked my colleague if he would give up. He conceded and I gave the student almost full credit. In leaving my colleague’s office, I recalled that the student had said he had other answers to the problem, so I asked him what they were.

„Oh, yes,” said the student. „There are many ways of getting the height of a tall building with the aid of a barometer. For example, you could take the barometer out on a sunny day and measure the height of the barometer, the length of its shadow, and the length of the shadow of the building, and by the use of simple proportion, determine the height of the building.”

„Fine,” I said. „And the others?”

„Yes,” said the student. „There is a very basic measurement method that you will like. In this method, you take the barometer and begin to walk up the stairs. As you climb the stairs, you mark off the length of the barometer along the wall. You then count the number of marks, and this will give you the height of the building in barometer units. A very direct method.

„Of course, if you want a more sophisticated method, you can tie the barometer to the end of a string, swing it as a pendulum, and determine the value of ‚g’ at the street level and at the top of the building. From the difference between the two values of ‚g’, the height of the building can, in principle, be calculated.”

Finally, he concluded, „If you don’t limit me to physics solutions to this problem, there are many other answers, such as taking the barometer to the basement and knocking on the superintendent’s door. When the superintendent answers, you speak to him as follows: ‚Dear Mr. Superintendent, here I have a very fine barometer. If you will tell me the height of this building, I will give you this barometer.'”

At this point, I asked the student if he really didn’t know the answer to the problem. He admitted that he did, but that he was so fed up with college instructors trying to teach him how to think and to use critical thinking, instead of showing him the structure of the subject matter, that he decided to take off on what he regarded mostly as a sham.